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Abstract

The aim of this paper is the study of three-dimensional Lorentzian manifolds whose Ricci tensor
has three equal constant eigenvalues, whose associated eigenspace is two-dimensional. A complete
local classification of this class of curvature homogeneous manifolds is presented. It turns out
that, if the eigenvalue is zero, these are exactly the curvature homogeneous manifolds modelled
on an indecomposable, non-irreducible Lorentzian symmetric space, which were first studied in
Cahen et al. (1990), and the techniques presented in this paper can therefore be applied to obtain a
complete (local) classification of these manifolds, and to construct a number of new examples of
such manifolds.
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1. Introduction

A pseudo-Riemannian manifold (M, g) is said to be curvature homogeneous [23] if,
for every pair of points p,q € M, there exists a linear isometry F :T,M — T, M such
that F*R, = Rp. Every locally homogeneous pseudo-Riemannian manifold is curvature
homogeneous, and a curvature homogeneous space (M, g) is said to have the same curvature
tensor as a homogeneous space (M, g) if, for any pair of points m € M and m € M there
exists a linear isometry F: T, M — T M such that F*R;z = R, In this case M, g) is
said to be a (homogeneous) model space for (M, g).
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In [23], Singer states the problem of constructing non-homogeneous curvature homoge-
neous manifolds. This problem was extensively studied by many authors (see, e.g., [13—
15,21,22,24}]) and a large number of such examples were discovered. For a survey of known
results and for more detailed information on the subject of curvature homogeneity and
related problems, we refer to [1,3,26]. The first examples of non-homogeneous curvature
homogeneous Lorentzian spaces were found in [6], where the authors made a study of cur-
vature homogeneous manifolds modelled on Lorentzian symmetric spaces and constructed
a family of such manifolds parametrized by one function of one variable. In [20], Patrange-
naru later obtained another family of curvature homogeneous Lorentzian manifolds, using
a construction similar to the one in [15].

In a number of recent publications (e.g., [4,5,8-12,16-18]), the problem of (locally)
classifying three-dimensional curvature homogeneous pseudo-Riemannian manifolds re-
ceived considerable attention. It is well known that the Riemann curvature tensor of a
three-dimensional Riemannian manifold is completely determined by its Ricci tensor. As
a consequence, a three-dimensional Riemannian manifold is curvature homogeneous if
and only if it has constant principal Ricci curvatures. If all principal Ricci curvatures
are equal (and constant), the manifold is of constant curvature. In [8,12] the authors ob-
tained a complete local classification of three-dimensional Riemannian manifolds with
constant principal Ricci curvatures p; = p2 # p3. In [4], an alternative proof for this
classification result was obtained by using a technique introduced in [17]. Finally, in
[10,11,16], the authors studied Riemannian three-manifolds with three distinct principal
Ricci curvatures, and in [16] a complete classification of the manifolds of this type was
obtained.

As in the Riemannian case, the Riemann curvature tensor of a Lorentzian three-dimen-
sional manifold is completely determined by its Ricci tensor. Contrary to the Riemannian
case however, the Ricci operator, i.e., the self-adjoint operator associated to the Ricci tensor,
cannot always be diagonalized, although it can always be written in one of the following
standard forms with respect to a pseudo-orthonormal basis {E|, E, E3}, where E3 is a
time-like unit vector (see e.g. [7,19]):

a 0 0 a 0 0
I.L{o » 0], III:{O b c\,
0 0 ¢ kO —c b}
(D
b a -a a 0 0
II: ya b 0 1}, IV:1 0 b 1
a 0 b \0O -1 b£2

As a consequence, a three-dimensional Lorentzian manifold is curvature homogeneous if
and only if its Ricci operator takes one of the forms given by (1), where a, b and ¢ are
constant along the manifold M, and a systematic investigation of curvature homogeneity
should be made in all these cases.

‘As in the Riemannian case, if the Ricci tensor is diagonalizable with three equal (and
constant) eigenvalues, the manifold is of constant curvature and hence locally homogeneous.
The first non-trivial case is therefore that of a diagonalizable Ricci operator with constant



P. Bueken / Journal of Geometry and Physics 22 (1997) 349-362 351

eigenvalues p; = p2 # p3, and a complete local classification of the manifolds of this
type was obtained in [5], where the present author corrected and extended the results given
in [18].

In the present paper, we continue the study of the classification problem for curvature
homogeneous three-dimensional Lorentzian manifolds. In particular, we investigate three-
dimensional Lorentzian manifolds whose Ricci tensor has three equal constant eigenvalues,
whose associated eigenspace is two-dimensional, i.e., the Ricci tensor is of type IV with
a = b+ 1. We will prove the existence of a family of such metrics, and determine which of
these metrics are locally isometric, thereby obtaining a classification result similar to those
presented in {4,5]. It turns out that, if the triple eigenvalue of the Ricci tensor is equal to
zero, the manifolds considered here are exactly the Lorentzian manifolds modelled on an
indecomposable, non-irreducible Lorentzian symmetric space studied in [6]. Our techniques
therefore allow us to classify, at least locally, the Lorentzian manifolds of this type, and to
obtain a number of new (non-homogeneous) examples of such manifolds.

The rest of this paper is organized as follows. In Section 2, we compute the necessary and
sufficient conditions for a Lorentzian manifold to have a Ricci curvature tensor with three
equal constant eigenvalues, whose associated eigenspace is two-dimensional. In Section 3,
we provide a simple criterion to determine if two such manifolds are locally isometric.
Finally, in Section 4, we study the differential equations of Section 2 in more detail. We
investigate the local existence of the three-dimensional Lorentzian manifolds under consid-
eration, and we determine which of these manifolds are locally isometric, thereby obtaining
a classification result similar to those given in {4,5].

2. The basic differential equations

Let (M, g) be a three-dimensional Lorentzian manifold whose Ricci tensor has three
equal constant eigenvalues, whose associated eigenspace is two-dimensional. Then, at least
locally, there exists a pseudo-orthonormal frame field {E1, E», E3} such that (see, e.g.,
[7,19])

g(E\,E))=g(Es, En) =1,  g(E3 E3) =1, ‘
gEi,Ey=0 ifi#j )
and such that

p(E,EN=B+1n,  p(E, E2) =8,
p(Er, E3)=1,  p(E3, E3) = —(B+27), 3)

where n = =£1, and where the remaining components of the Ricci tensor vanish. Replacing
this pseudo-orthonormal frame field by

N Ey+nE Ey—nE
E, = E, E, = 221083 E3=2_ﬁy,

4)
— (
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conditions (2) and (3) are equivalent to the (local) existence of a so-called “null” frame field
{E), E2, E3} such that

g(Ey, E1) = g(Ey, E3) =1, g(E;i, E;) =0 otherwise, 5)
and

p(E1, E1) = p(E, E3)=2K, p(E3, E3) = _2,7,
p(E;, Ej) =0 otherwise, ®)
where 2« = 8 + 1.

The components of the Levi Civita connection V can be written, with respect to this null
frame field { E1, E3, E3}, as

Ve E1=AE; + BE3, Vg, E1 = DE; + EE3, Ve, E1 =GEy; + HE3,

Ve, E2=—-BE|+CE;, Vg,E;=—-EE|+FE;, VgE;=-HE)+1Ej,

Ve, E3=—AE| - CE3, Vg,E3=-DE|—FE3, VgE;= ~GE| — IEs.
Q)

Twice contracting the second Bianchi identity, and taking into account that the scalar cur-
vature 7 is constant along M, we find that

Vi, p(E;, E1) + VE,p(E;, E3) + Vg p(Ei, E2) =0 ®
foralli € {1, 2, 3}, and it then follows immediately from (7), (6) and (8) that
E =0, B =2F. &)

Remark 1. It is easily seen that conditions (5) and (6) only fix the null frame field
{E1, E2, E3} up to a “null” transformation

Ej =E| +aE), E}=eE;, Ej=e(E3 —eaE| — 30’E)), (10)

where ¢, = +1,i = 1,2, and where « is an arbitrary real-valued function on M, and
a straightforward computation shows that such a transformation changes the connection
components given in (7) as follows:

F' = qF, D' =¢;D + Ey(@) +aF,

C' = e,C + 3uaF, H =eH —2aF,

I' = ey + ©a(H — C) — 3a*F),

A" = €)(A + €20(C + D) + 62E((a) + a Ea (@) + 202 F),

G' = &G +a(l — A) +e250*(H —2C — D) — }a’F
+ E3(@) — e20E1 (@) — Ja*Ez(a).

1n

It follows from Remark 1 that, choosing the function « to be a solution of the differential
equation

C—-D—-Ey(a)+2aF =0,
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we can always specify the null frame field { £, E3, E3} in such a way that
D=C. (12)

The null frame field is then fixed up to a null transformation (10), where « satisfies the
differential equation

Ex(@) —2aF =0. (13)

A straightforward computation using (7), (9), (12) and (6) now yields the following
system of differential equations:

E»(F) —3F% =0, (14)
Ei(C)+C? — Ex(A)+ AF +x =0, (15)
E\(H) + H® —2E3(F) +2IF + 2AF +« =0, (16)
E\(F) +4FC — E5(C) =0, (17)
E,(H)+2FC —2FH =0, (18)
E((G) — E3(A)+ A2 4+3CG + GH — Al =2 =0, (19)
E\(I)—Ey(G)+ FG+CI+HI =0, (20)
E2(G) — E3(C) + AC — AH +2FG = 0, @21
E>(I) — E3(F)+C*—2CH +2IF —x =0. (22)

Moreover, it is easily seen from (7) that the Lie brackets of the vector fields {E}, E2, E3}
are given by

[E1, E2]=—-2FE,, (23)
[El, E3]=—AE| - GE; — (C + H)Ejs, (24)
[Ey, E]=—(C — HYE; — IE; — FE;. (25)

Conversely, the Koszul formula [19]
20(VxY, Z)=X(g(Y,2)) + Y(g(Z, X)) — Z(g(X,Y))
—8(X, Y, ZD) + g(¥, [Z, XD + g(Z,[X, Y])
shows that (23)—(25) imply (7), and summarizing the results of this section, we obtain the

following.

Theorem 1. The necessary and sufficient conditions for a Lorentzian manifold (M, g) to
have a Ricci tensor which satisfies (6), is the existence of a null frame field {Ey, E;, E3}
and functions A, C, F, G, H, I such that the differential equations (14)—~(25) hold.

3. Local isometries

The main aim of this paper is to give a complete (local) classification of the three-
dimensional Lorentzian manifolds whose Ricci tensor is given by (6). To this purpose, it is
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important to have a simple criterion to determine if two such manifolds are locally isometric
or not. To find such a criterion, let us suppose that (M, g) and (M’, g’) are two manifolds
whose Ricci tensor is given by (6) (with the same values for « and ), and let {E}, E3, E3}
and {E}, E5, E3} denote the (local) null frame fields along these manifolds constructed as
in Section 2. Then we have the following.

Theorem 2. The differentiable mapping f : M — M’ is a local isometry if and only if

fiE1=€E| +d'E, f+E2 = €1E5,
frE3=€1(E} — €2a'E} — 30" E}), (26)

where ¢; = *1,i = 1,2, and where ' : M’ — R is a real-valued function such that
E\(@) - 2d'F' =0.

Proof. If f is a local isometry, it maps the null frame field {E|, E2, E3} into the null
frame field { fi E1, f+E2, f«E3)}. This frame field satisfies (6),(5) and (12), and (10) and
(13) immediately imply the required result.

Conversely, if f satisfies the conditions stated in the theorem, it preserves the null frame
field, and hence also the pseudo-orthonormal frame field {E\, Es, E 3} givenby (4), implying
that f must be a local isometry. a

Using Remark 1, together with Theorem 2, we can now prove the following resuit,
giving necessary conditions for a three-dimensional Lorentzian manifold whose Ricci tensor
satisfies (6) to be locally homogeneous:

Theorem 3. Let (M, g) be a three-dimensional Lorentzian manifold whose Ricci tensor
satisfies (6). If (M, g) is locally homogeneous then

(1) F=0;

(2) C = H =+./—«, and hence k < 0;

(3) I is constant along M.

Proof. Let p and p’ be two points on M and denote by {E, E2, E3} (resp. {E{, E}, E5})
the null frame field in a neighbourhood around p (resp. p’) constructed as in Section 2. The
local homogeneity of (M, g) implies the existence of a (local) isometry f : M — M such
that f(p) = p’. It then follows from (26) and (11) that F is constant along M, and (14)
implies that F. = 0. A similar argument shows that H and C are constant along M, and
that Ex(I) = 0, and it then follows from (16) and (22) that C = H = +./—«. Finally, the
argument used above then yields that 7 is constant along M. a

4. Local classification

The aim of this section is to make a detailed analysis of the differential equations (14)—
(25), and to obtain a complete local classification of the three-dimensional Lorentzian
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manifolds whose Ricci tensor satisfies (6). To this purpose, we start by determining the
solutions of the differential equations, thereby obtaining a family of three-dimensional
Lorentzian manifolds whose Ricci tensor is given by (6). Next, we determine which of these
manifolds are locally isometric, and combining these results, we obtain a local classification
result similar to those in [4,5].

Remark 2. It is easily seen that (14) admits two types of solutions, namely, F is constant
(in which case F = 0), and F is non-constant, which, by Theorem 2 and Remark 1, lead to
two families of solutions that are not locally isometric. In what follows, we will consider
these two classes of solutions separately.

Case 1: F = 0. In this case, it follows from (23) that we can construct a coordinate
system (x, y, z) on a neighbourhood in M such that

E =2 Ey= 2 Ey=a 4b2 4o 27
'= e 2= %y 3T T8y Ty
and (24) and (25) then yield that
da a
dox ay
ab ab
—=-G—-(C+H», —=-I, (28)
ox dy
dc dc
— = —(C + H)c, — =0.
o (C+ H)c 3y

The complete solution of Egs. (16) and (18) is given by

(x+H@E) ™ or 0 ifk =0,
H = { Jxtan(—vkx + H(z)) ifx >0, _ (29)
~—=xtanh(v/=«x + H(z)) or £+/—« ifx <O,

and we obtain from (28) and (22) that

19¢
c=&(x,2), C=-H-~—, a=(H-C)y+a2), (30)
C 0x
I=(—C*+2CH + 1)y +1(x,2),
, ; ’
b=(C2—2CH——x)12——Iy+b(x,z),
.
a=(c+c2+%)y -2 _(c 1 ma,
ox dx
ac\ y? al -
G=(H-0O(CP+r+2= )L +(=+C+HI)y
ox / 2 ox

9b _
—— = (C+ H)b,
dx
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while Eqs. (15), (17) and (20} are trivial consequences of (29) and (30). Substituting (30)
in the remaining Eqs. (19) and (21), we obtain the following system of two differential
equations:

- acC da ac  al
~H+OT+a(C?-H+ =)+ 2(C-H)+ 6= — =— =0,
dx dx dz dx
aZ(K—E—Cz—ch)
dx
a(C+H) d%a - da
_a (2D T8 e mT a2 @31)
0z dx ox
?a da- (oa\* 9a - (dC
_z ——J-(—=) —-e(C+H)— +2b{ —+2C?+2CH
“axo7  ox (ax) cC+Hg + (3x+ + )

ob 3%b
+2—(H+20) + —— +2n=0.
ox ox

We then find from (29)—(31) and the Cauchy—Kowalewski theorem that, at least in the
analytic case, there exists a family of solutions of (14)—~(25) depending on two functions
of two variables (namely, ¢ and a) and four functions of one variable (namely, H and the
initial conditions for / and b).

Now, let (M, g) and (M’, g’) be two manifolds associated to different solutions of
Egs. (14)—(25), and let (x, y, z) (resp. (x’, y’, z')) be local coordinates on M (resp. M’)
constructed as in (27). Then it follows from Theorem 2 that the mapping f: M — M’
given by

=Xy, Y=yY@y2d, =712
is a local isometry if and only if

x' = ex + ¢1(2), y = ey + px, 2) + ¢2(2), 7 = ¢3(2).

We conclude that the family of isometries in this case depends on three functions of one
variable and one function of two variables.

Comparing the family of solutions of the differential equations (14)—(25) with the family
of isometries for these Lorentzian manifolds, we obtain the following result.

Theorem 4. The isometry classes of the germs of real analytic Lorentzian metrics whose
Ricci curvature tensor satisfies (6) and such that Vg, E; = 0, are parametrized by one
function of two variables and one function of one variable.

Case 2: F # 0. In this case, we start by constructing a coordinate system (x’, y’, z’) on
a neighbourhood in M such that

]

Ey=—.
2= 5
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Then it follows from (14) that
F=-}(+Fux,Z)»™!
and choosing, if necessary, a new coordinate system

’

x=1x, y=y'+i'(x/,z/), z=12,
we can always assume that
F= —%y‘l‘ (32)
Next, writing

3 4 9
El=a— + b +c—,
1= TP T

it follows from (23) and (32) that
a=a(x, )y 3, b=ba. 2y = =@y,

showing that the function b satisfies the differential equation (13). Putting b = « in (10),
we then obtain a new null frame field {E{, E5, E3) such that

a a
E —ay 232 yay232 B =2
1=y dx toy az 2 dy

and applying a coordinate transformation

¥ =3, 2, y=y, z=17(x,2),
where
J 97
at 152 o,
ax ¥4

we obtain a new coordinate system such that

a a
E ' =ay**—, E)=_—_.
! Y 9x 2 dy

Summarizing the above construction, we can always assume the coordinate system
(x, y, z) and the frame field {E;, E2, E3} to be chosen in such a way that

d d d d ]
E,=a(x,2)y 3—, Ey=—, Ey=d— +e—+ f—, 33
1 =a(x,z)y x 2=73 3 8x+eay+faz (33)
with a f # 0, while F is given by (32).
Integration of Egs. (17), (18) and (15) yields
C=Cx, 2y  H=Hz2y?-Cy ™,
_ 3_8C 3 3

A=A(x, -1/3 _ =%~ -1 _ _C2 -5/3 el 34
(x, )y %97 2¢7 + riad 34)
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and from (25) and (33) we find

ad

— =—(C - H)ay ** - Fad, (35)
dy

ge— =—1— Fe, 36)
dy

g =—Ff. ‘ 37
dy

Integrating (35) and (37), and taking into account (34), we obtain that

d=d(x,2)y'? - 3alHy™"? + 3aCy™"',  f= fx 2y (38)

while it follows from (36) and (16) that

3/3_0H - 3 - 9__ 9., _ 9
e=¢e(x, z)y“'/3 ( a——A+—H2) y2/3—ZHC+§C2y 2/3—§xy2,

2\2%% 2

3. 9H . 3. 3 9 15
J=—syin_ 1L A4 2E )y VB 2Fey 4 2E2ysn B
¢ 2(2 ax Aty T o gHCOy Ay gy
(39

It is then easily seen that (22) is tr1v1ally satisfied. Next, (24) and (33) yield the differential
equations

ad da 2
ay P2 _ g2y 3 4 Zeqy S - f y 3 = —Aay™3 — (C + H)d,
9x ox 3
(40)
d
ay 232 = _G — (C + H)e, 1)
dx
ay 3 af —(C+ H)f, (42)
and (41) immediately yields that
de .
G=- —2/3< - +He) (43)
while (40) and (42) lead to thé differential equations
B ) . .
Hf + Zz—l =0, 44)
dx ‘
ad -da 2 _da - -
d— —d—+ -ae— f— +dH =0.
aax 9% + 3ae faz + 45)
Substituting the expressions found above in (21) we obtain the differential equation
9__8H 3., 3_0adoH 3_,9%°H
2AH - -gH-— —ZH> - Za—— — 23—
27 %% T2 2%xax 2% ox2
dA  -3C 4-._ -3C
ta——+d— —Ce+ f— =0, (46)
dx ox 3 9z



P. Bueken /Journal of Geometry and Physics 22 (1997) 349-362 359

while (20) is trivially satisfied. Finally, making use of (44)-(46), it turns out that (19) is
equivalent to the differential equation

a4 a2 o~
oA o€

X

a
o]

12f— +12d— + 12H% + 123 ¥ 245 — 16Aé — 2Tka— — 54cCH
dz dx Ix2 Ix
da e 9H - de
+12a28 %€ L 12362 424502 ~ 0. (47)
0x dx ox dx

Choosing three functions @ # 0, f # 0 and d of two variables, we can solve (44)
and (45) for the functions H and &, and applying the Cauchy-Kowalewski theorem to the
differential equations (46) and (47), we find that, at least in the analytic case, there exists a
family of solutions to the differential equations (14)—(25) depending on three functions of
two variables (namely, a, f and d) and two functions of one variable (namely, the initial
conditions for A and C).

As before, let us suppose that (M, g) and (M’, g’) are two manifolds associated to dif-
ferent solutions of (14)—~(25), and let (x, y, z) (resp. (x’, y’, z')) be local coordinates on M
(resp. M) constructed as in (33). Then it follows immediately from Theorem 2 and our
special choice of coordinates that f is a local isometry if and only if

x' =x'(x,2), Yy =é€1y, =7,

showing that the family of isometries in this case depends on one function of one variable
and one function of two variables.

Again comparing the family of solutions of the differential equations (14)—(25) with the
family of isometries, we obtain the following.

Theorem 5. The isometry classes of the germs of real analytic Lorentzian metrics whose
Ricci curvature tensor satisfies (6) and such that Vg, E> # 0, are parametrized by two
functions of two variables and one function of one variable.

Remark 3. In [6] the authors proved that a curvature homogeneous three-dimensional
Lorentzian manifold modelled on an indecomposable, non-irreducible Lorentzian symmet-
ric space has a Ricci curvature tensor satisfying (6) with x = 0, and they constructed a
family of non-homogeneous curvature homogeneous examples (depending on one function
of one variable), by assuming that the null eigenvector E» is recurrent, i.e., F = H = 0.
The techniques developed in this section allow us to obtain a complete local classifica-
tion of three-dimensional curvature homogeneous Lorentzian manifolds modelled on an
indecomposable, non-irreducible Lorentzian symmetric space, thereby solving (at least in
the three-dimensional case) a problem stated in [6]. In the rest of this section, we will use
the results stated above to compute a family of solutions similar to the one in [6], as well
as some new examples of curvature homogeneous Lorentzian manifolds modelled on an
indecomposable, non-irreducible three-dimensional Lorentzian symmetric manifold.

Example 1. We start by constructing a family ot explicit examples similar to the one in
[6]. To do this, we put

F=H=k=a=0, c=1.
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Then it follows from (30) and (31) that

C=0, A=0, 1 = 1),
and putting

b=—I(@z)y — nx?,

we obtain a family of curvature homogeneous Lorentzian manifolds (depending on the
function 7 (z)) whose Ricci tensor satisfies (6) with ¥ = 0. It can be shown using Theorem
2 that these manifolds are pairwise non-isometric and it is easily seen from Theorem 3 that
they are, in general, non-homogeneous.

Example 2. To construct a new example, weput F =« = 0and H = —C = x~!. Then
it follows from (30) and (31) that putting

a=2"ly, b= %x_2y2—2r7x21nx, c=1,

in (27), we obtain a curvature homogeneous three-dimensional Lorentzian manifolds mod-
elled on an indecomposable Lorentzian symmetric space, while (11) and Theorem 2 imply
that this example cannot be isometric to the ones given in [6], and Theorem 3 shows that
this manifold is not locally homogeneous.

Example 3. Finally, putting

F=-3y!, C=H=«=0, a=]1, f=1
in the computation outlined in Case 2, and choosing

A=1n, é=3,

N —

we find that the null frame field

d 3
Ei=y 33—, Ey=—,
1=y o 2 3y
a 3 ,3) 98 3
Ea= —2xy13 L 33 _ 223 2 L 139
3 Y 6x+ Y 4ny 6y+y a9z

determines a curvature homogeneous non-homogeneous Lorentzian manifold modelled on
an indecomposable non-irreducible symmetric space, which by Remark 2 is not isometric
to any of the examples introduced before.

Remark 4. It follows from Theorem 3 that there exists no homogeneous three-dimensional
Lorentzian manifold whose Ricci tensor satisfies (6) with ¥ > 0. As an immediate conse-
quence, the curvature homogeneous (non-homogeneous) Lorentzian manifolds associated
to x > 0 do not admit a homogeneous model space.
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