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Abstract 

The aim of this paper is the study of three-dimensional Lorentzian manifolds whose Ricci tensor 
has three equal constant eigenvalues, whose associated eigenspace is two-dimensional. A complete 
local classification of this class of curvature homogeneous manifolds is presented. It turns out 
that, if the eigenvalue is zero, these are exactly the curvature homogeneous manifolds modelled 
on an indecomposable, non-irreducible Lorentzian symmetric space, which were first studied in 
Cahen et al. (1990), and the techniques presented in this paper can therefore be applied to obtain a 
complete (local) classification of these manifolds, and to construct a number of new examples of 
such manifolds. 
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1. Introduction 

A pseudo-Riemannian manifold (M, g) is said to be curvature homogeneous [23] if, 
for every pair of points p, q E M, there exists a linear isometry F : T,M + Tq M such 
that F* R, = R,. Every locally homogeneous pseudo-Riemannian manifold is curvature 
homogeneous, and a curvature homogeneous space (M, g) is said to have the same curvature 

tensor as a homogeneous space (A?, j) if, for any pair of points m E M and Fi E M there 
exists a linear isometry F : Tm M + TgM such that F*& = R,. In this case (M, 2) is 
said to be a (homogeneous) model space for (M, g ) . 
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In [23], Singer states the problem of constructing non-homogeneous curvature homoge- 
neous manifolds. This problem was extensively studied by many authors (see, e.g., [13- 
152 1,22,24]) and a large number of such examples were discovered. For a survey of known 
results and for more detailed information on the subject of curvature homogeneity and 
related problems, we refer to [ 1,3,26]. The first examples of non-homogeneous curvature 
homogeneous Lorentzian spaces were found in [6], where the authors made a study of cur- 
vature homogeneous manifolds modelled on Lorentzian symmetric spaces and constructed 
a family of such manifolds parametrized by one function of one variable. In [20], Patrange- 
naru later obtained another family of curvature homogeneous Lorentzian manifolds, using 
a construction similar to the one in [ 151. 

In a number of recent publications (e.g., [4,5,8-12,16-18]), the problem of (locally) 
classifying three-dimensional curvature homogeneous pseudo-Riemannian manifolds re- 
ceived considerable attention. It is well known that the Riemann curvature tensor of a 
three-dimensional Riemannian manifold is completely determined by its Ricci tensor. As 
a consequence, a three-dimensional Riemannian manifold is curvature homogeneous if 
and only if it has constant principal Ricci curvatures. If all principal Ricci curvatures 
are equal (and constant), the manifold is of constant curvature. In [8,12] the authors ob- 
tained a complete local classification of three-dimensional Riemannian manifolds with 
constant principal Ricci curvatures pl = p2 # ~3. In [4], an alternative proof for this 
classification result was obtained by using a technique introduced in [17]. Finally, in 
[ 10,11,16], the authors studied Riemannian three-manifolds with three distinct principal 
Ricci curvatures, and in [16] a complete classification of the manifolds of this type was 
obtained. 

As in the Riemannian case, the Riemann curvature tensor of a Lorentzian three-dimen- 
sional manifold is completely determined by its Ricci tensor. Contrary to the Riemannian 
case however, the Ricci operator, i.e., the self-adjoint operator associated to the Ricci tensor, 
cannot always be diagonalized, although it can always be written in one of the following 
standard forms with respect to a pseudo-orthonormal basis {El, E2, Es}, where Es is a 
time-like unit vector (see e.g. [7,19]): 

(1) 

As a consequence, a three-dimensional Lorentzian manifold is curvature homogeneous if 
and only if its Ricci operator takes one of the forms given by (l), where a, b and c are 
constant along the manifold M, and a systematic investigation of curvature homogeneity 
should be made in all these cases. 

‘As in the Riemannian case, if the Ricci tensor is diagonalizable with three equal (and 
constant) eigenvalues, the manifold is of constant curvature and hence locally homogeneous. 
The first non-trivial case is therefore that of a diagonalizable Ricci operator with constant 
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eigenvalues pt = p2 # ~3, and acomplete local classification of the manifolds of this 
type was obtained in [5], where the present author corrected and extended the results given 
in [ 181. 

In the present paper, we continue the study of the classification problem for curvature 
homogeneous three-dimensional Lorentzian manifolds. In particular, we investigate three- 
dimensional Lorentzian manifolds whose Ricci tensor has three equal constant eigenvalues, 
whose associated eigenspace is two-dimensional, i.e., the Ricci tensor is of type IV with 
a = b 4 1. We will prove the existence of a family of such metrics, and determine which of 
these metrics are locally isometric, thereby obtaining a classification result similar to those 
presented in [4,5]. It turns out that, if the triple eigenvalue of the Ricci tensor is equal to 
zero, the manifolds considered here are exactly the Lorentzian manifolds modelled on an 
indecomposable, non-irreducible Lorentzian symmetric space studied in [6]. Our techniques 
therefore allow us to classify, at least locally, the Lorentzian manifolds of this type, and to 
obtain a number of new (non-homogeneous) examples of such manifolds. 

The rest of this paper is organized as follows. In Section 2, we compute the necessary and 
sufficient conditions for a Lorentzian manifold to have a Ricci curvature tensor with three 
equal constant eigenvalues, whose associated eigenspace is two-dimensional. In Section 3, 
we provide a simple criterion to determine if two such manifolds are locally isometric. 
Finally, in Section 4, we study the differential equations of Section 2 in more detail. We 
investigate the local existence of the three-dimensional Lorentzian manifolds under consid- 
eration, and we determine which of these manifolds are locally isometric, thereby obtaining 
a classification result similar to those given in [4,5]. 

2. The basic differential equations 

Let (M, g) be a three-dimensional Lorentzian manifold whose Ricci tensor has three 
equal constant eigenvalues, whose associated eigenspace is two-dimensional. Then, at ieast 
locally, there exists a pseudo-orthonormal frame field {,?I, ,?&, Es) such that (see, e.g., 

17,191) 

g(& &) = g(& E2) = 1, 

g(Ei,Ej)=O ifi #j 

and such that 

g(&, E3) = -1, 

(2) 

P& El) = B + q, b-@z. E2) = B, 

p& &) = 1, FM.3, k.3) = -(B + 2171, (3) 

where q = k 1, and where the remaining components of the Ricci tensor vanish. Replacing 
this pseudo-orthonormal frame field by 

El = I?,, E2 = E2+Vi3 E2 - r& 

fi ’ 
E3 = 

Jz ’ 
(4) 
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conditions (2) and (3) are equivalent to the (local) existence of a so-called “null” frame field 
{Et, Ez, E3) such that 

g(Et, EI) = g(Ez, E3) = 1, g(Ei, Ej) = 0 otherwise, (5) 

and 

~(EI, El) = p(E2, E3) = 2K, 

p( Ei , Ei) = 0 otherwise, 

where 2~ = j? + r]. 

p(E3, E3) = -2~. 

(6) 

The components of the Levi Civita connection V can be written, with respect to this null 
frame field {El, E2, E3), as 

VE, El = AE2 + BE3, VEXES = DE2 + EE3, VE,E~ = GE:! + HE3, 

VE, E2 = -BEI + CE2, VEXES = -EEl -I- FEZ, V&E2 = -HEI + IE2, 

VE, E3 = -AEl - CE3, v~E3 = -DE1 - FE3, v~,E3 = -GE1 - IE3. 

(7) 

‘Mce contracting the second Bianchi identity, and taking into account that the scalar cur- 
vature t is constant along M, we find that 

VElP(Ei, El) + VEzP(Ei, ES) + VESp(Ei, ~52) = 0 

for all i E (1,2, 3}, and it then follows immediately from (7), (6) and (8) that 

E = 0, B = 2F. 

(8) 

(9) 

Remark 1. It is easily seen that conditions (5) and (6) only fix the null frame field 
{El, E2, E3} up to a “null” transformation 

E; = c2El +aE2, E; = ~1E2, E; = q(E3 - r2aEl - ;a2E4, (10) 

where Ei = f 1, i = 1, 2, and where (Y is an arbitrary real-valued function on M, and 
a straightforward computation shows that such a transformation changes the connection 
components given in (7) as follows: 

F’ = qF, D’ = QD + Ed +aF, 
C’ = EZC + 3aF, H’ = EZH - 2aF, 
I’ = rl(l + cp(H - C) - ;a2F), 

A’ = ??I(A+EZ(Y(C + D) +rzEl(a) +aEz(a) +2a2F), 
(11) 

G’ = EZG + a(Z - A) + 4a2(H - 2C - D) - ;a3F 
+ E3(ar) - ??2aE1(cx) - $ar2E2(a). 

It follows from Remark 1 that, choosing the function a! to be a solution of the differential 
equation 

C-D-E2(a)+2aF=O, 
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we can always specify the null frame field {El, Ez, E3} in such a way that 

D = C. (12) 

The null frame field is then fixed up to a null transformation (lo), where (Y satisfies the 
differential equation 

Ed - 2aF = 0. (13) 

A straightforward computation using (7), (9), (12) and (6) now yields the following 
system of differential equations: 

Ez(F) - 3F2 = 0, 

El(C) + C2 - Ez(A) + AF + K = 0, 

El(H) + H2 - 2E3(F) + 2ZF + 2AF + K = 0, 

EI (F) + 4FC - E2(C) = 0, 

Ez(H) + 2FC - 2FH = 0, 

El(G) - E3(A) + A2 + 3CG + GH - AZ - 2r] = 0, 

El(I) - Ez(G) + FG + CZ + HZ = 0, 

Ez(G) - E3(C) + AC - AH + 2FG = 0, 

E2(I) - E3(F) + C2 - 2CH + 2ZF -K = 0. 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

Moreover, it is easily seen from (7) that the Lie brackets of the vector fields (El, E2, E3) 
are given by 

[El, E21=-2FE1, (23) 

[El, E3] = -AEl - GE2 - (C + H)E3, (24) 

[Ez. E3] = -(C - H)El - ZE2 - FE3. (25) 

Conversely, the Koszul formula [ 191 

2g(VxY, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) 

-g(X, W, 4) + gv, [Z, Xl) + g(Z, [X, YI) 

shows that (23)~(25) imply (7), and summarizing the results of this section, we obtain the 
following. 

Theorem 1. The necessary and suficient conditions for a Larentzian manifold (M, g) to 
have a Ricci tensor which satisfies (6), is the existence of a null frame field {El, ET, E3} 
andfunctions A, C, F, G, H, Z such that the differential equations (14)-(25) hold. 

3. Local isometries 

The main aim of this paper is to give a complete (local) classification of the three- 
dimensional Lorentzian manifolds whose Kicci tensor is given by (6). To this purpose, it is 
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important to have a simple criterion to determine if two such manifolds are locally isometric 
or not. To find such a criterion, let us suppose that (M, g) and (M’, g’) are two manifolds 
whose Ricci tensor is given by (6) (with the same values for K and r]), and let {El, E2, E3) 
and { Ei , Ei, E;} denote the (local) null frame fields along these manifolds constructed as 
in Section 2. Then we have the following. 

Theorem 2. The dijgcerentiable mapping f : M + M’ is a local isometry ifand only if 

f,E1 = e2E; + cx’E;, A.52 = ~1 E;, 

f*E3 =e,(E; - e2~y’E; - ;~x’~E;), (26) 

where et = fl, i = 1,2, and where o1’ : M’ + Iw is a real-valued function such that 
E;(a’) - 2cx’F’ = 0. 

Pro05 If f is a local isometry, it maps the null frame field {El, E2, E3} into the null 
frame field [f* El, f* E2, f* E3). This frame field satisfies (6),(5) and (12), and (10) and 
(13) immediately imply the required result. 

Conversely, if f satisfies the conditions stated in the theorem, it preserves the null frame 
field, and hence also the pseudo-orthonormal frame field (El, k2, E3] given by (4), implying 
that f must be a local isometry. 0 

Using Remark 1, together with Theorem 2, we can now prove the following result, 
giving necessary conditions for a three-dimensional Lorentzian manifold whose Ricci tensor 
satisfies (6) to be locally homogeneous: 

Theorem 3. Let (M, g) be a three-dimensional Lorentzian manifold whose Ricci tensor 
satisfies (6). If (M, g) is locally homogeneous then 
(1) F=O; 
(2) C = H = I!z~, and hence K 5 0; 
(3) I is constant along M. 

ProojI Let p and p’ be two points on M and denote by {El, E2, E3} (resp. {E;, E;, E;]) 
the null frame field in a neighbourhood around p (resp. p’) constructed as in Section 2. The 
local homogeneity of (M, g) implies the existence of a (local) isometry f : M + M such 
that f(p) = p’. It then follows from (26) and (11) that F is constant along M, and (14) 
implies that F. = 0. A similar argument shows that H and C are constant along M, and 
that E2(1) = 0, and it then follows from (16) and (22) that C = H = k&?. Finally, the 
argument used above then yields that I is constant along M. 0 

4. Local classification 

The aim of this section is to make a detailed analysis of the differential equations (14)- 
(25), and to obtain a complete local classification of the three-dimensional Lorentzian 
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manifolds whose Ricci tensor satisfies (6). To this purpose, we start by determining the 
solutions of the differential equations, thereby obtaining a family of three-dimensional 
Lorentzian manifolds whose Ricci tensor is given by (6). Next, we determine which of these 
manifolds are locally isometric, and combining these results, we obtain a local classification 
result similar to those in [4,5]. 

Remark 2. It is easily seen that (14) admits two types of solutions, namely, F is constant 
(in which case F = 0), and F is non-constant, which, by Theorem 2 and Remark 1, lead to 
two families of solutions that are not locally isometric. In what follows, we will consider 
these two classes of solutions separately. 

Case 1: F = 0. In this case, it follows from (23) that we can construct a coordinate 
system (x, y, z) on a neighbourhood in M such that 

El=&, ET=&. 
a a a 

E3=a~+b~+c~, 

and (24) and (25) then yield that 

aa - = -A - (C + H)a, 
aa 

ax 
- = -(C - H), 
ay 

ab 
- = -G - (C + H)b, 

ab 
ax 

- = -I, 
ay 

ac 
- = -(C + H)c, 

ac 
- 0. 

ax ay- 

The complete solution of Eqs. (16) and (18) is given by 

(x + H(z))-’ or 0 ifK =O, 
H = &tan(--Jl;x + H(z)) if K > 0, 

1/-Ktanh(fix + H(z)) or f 2/-K if K < 0, 

and we obtain from (28) and (22) that 

c = C(x, z), C=_&!!! 
tax’ 

a = (H - C)y + ii(x, z), 

I= (-C* + 2CH + K)y + j(x, z), 

b = (C* - 2CH - K); - iy + h(x, z), 

A = K + c* + g y - g - (c + H)ii, 

G=(H-C) 

(27) 

(28) 

(2% 

(30) 

-E - (C + H)b, 
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while Eqs. (15), (17) and (20) are trivial consequences of (29) and (30). Substituting (30) 
in the remaining Eqs. (19) and (21), we obtain the following system of two differential 
equations: 

( a(c + H) a2ii 
-ii 2 

az 
+s+(C+H)i+3(C+H)E 

> 

_ a2ii - 

( > 

2 

-%ZG ax 
_a”i_ g -c(C+H)$+26 g+2c2+2Uir 

( > 

(31) 

We then find from (29)-(31) and the Cauchy-Kowalewski theorem that, at least in the 
analytic case, there exists a family of solutions of (14)-(25) depending on two functions 
of two variables (namely, S and ii) and four functions of one variable (namely, fi and the 
initial conditions for i and 6). 

Now, let (M, g) and (M’, g’) be two manifolds associated to different solutions of 
Eqs. (14)-(25) and let (x, y, z) (resp. (x’, y’, z’)) be local coordinates on M (resp. M’) 
constructed as in (27). Then it follows from Theorem 2 that the mapping f : M + M’ 
given by 

x’ = x’(x, y, z), Y’ = Y’k y, z), z’ = z’(x, y, z) 

is a local isometry if and only if 

x’ = 62X + (pl (z), Y’ = ElY + /-4x, z) + w(z), z’ = p3(z). 

We conclude that the family of isometries in this case depends on three functions of one 
variable and one function of two variables. 

Comparing the family of solutions of the differential equations (14)-(25) with the family 
of isometries for these Lorentzian manifolds, we obtain the following result. 

Theorem 4. The isometry classes of the germs of real analytic Lorentzian metrics whose 
Ricci curvature tensor satisjies (6) and such that VQ E2 = 0, are parametrized by one 
function of two variables and onefunction of one variable. 

Case 2: F # 0. In this case, we start by constructing a coordinate system (x’, y’, z’) on 
a neighbourhood in M such that 
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Then it follows from (14) that 

F = -;(y’ + i(n’, z’))-’ 

and choosing, if necessary, a new coordinate system 

n =x’, y = y’ + &;(x’, z’), z =z’, 

we can always assume that 

F = -+y-‘. 

Next, writing 

(32) 

a a a 
El ‘QZ +bay +cy$ 

it follows from (23) and (32) that 

a = ii@, z)y_2’3, b = 6(X, z)y-2’3, c = C(X, z)y-*‘s, 

showing that the function b satisfies the differential equation (13). Putting b = a! in (lo), 
we then obtain a new null frame field (E’, , E;, E;] such that 

and applying a coordinate transformation 

z? = i(x, z), j = y, z = .?(x, z), 

where 

we obtain a new coordinate system such that 

E; = ,y-*I’-$ &=a. 
ay 

Summarizing the above construction, we can always assume the coordinate system 
(x, y, z) and the frame field {El, E2, E3} to be chosen in such a way that 

El = ii(x, z)Y-*/~$, E2=$ 
a a a 

E3=dG+e5+faz, (33) 

with ii f # 0, while F is given by (32). 
Integration of Eqs. (17), (18) and (15) yields 

c = C(x, z)y-4/3, H = fi(x,z)y-2/3 _ cy-4/3, 

A =2(x, z)Y-“~ 3_aC -, 
- Taxy _ :~*~-513 (34) 
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and from (25) and (33) we find 

ad 
- = -(C - H);JJ-~/~ - Fd, 
ay 
ae - =-I - Fe, ay 
af - = -Ff. ay 

(35) 

(36) 

(37) 

Integrating (35) and (37), and taking into account (34), we obtain that 

d = d(x, z)Y”~ - $&jy-‘/3 + ;iicy-l, 

while it follows from (36) and (16) that 

f = Jb Z)Y 113 , (38) 

It is then easily seen that (22) is trivially satisfied. Next, (24) and (33) yield the differential 
equations 

,y-2/3ad - _ _ d!!!!y-2/3 
ax 

+ ;eijy-513 - f$Y- 2/3 = -Azy-2/3 _ (C + H)d, 

ae ;iy-2/3_ = 
ax 

-G - (C + H)e, 

,~-~/~af = -(C + H)f, 
ax 

and (41) immediately yields that 

(40) 

(41) 

(42) 

(43) 

while (4Oj and (42) lead to the differential equations 
. 

Hffiig =o, (44) 

Substituting the expressions found above in (21) we obtain the differential equation 

(45) 

(46) 
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while (20) is trivially satisfied. Finally, making use of (44)-(46), it turns out that (19) is 
equivalent to the differential equation 

- - 
12.$ + 122: + 12H*; + 12,*$ + 247~ - 16& - 27~Zg - 54fcCH 

(47) 

Choosing three functions ii # 0, f # 0 and 2 of two variables, we can solve (44) 
and (45) for the functions # and 2, and applying the Cauchy-Kowalewski theorem to the 
differential equations (46) and (47), we find that, at least in the analytic case, there exists a 
family of solutions to the differential equations (14)-(25) depending on three functions of 
two variables (namely, ii, f and 2) and two functions of one variable (namely, the initial 
conditions for A and c). 

As before, let us suppose that (M, g) and (M’, g’) are two manifolds associated to dif- 
ferent solutions of (14)-(25), and let (x, y, z) (resp. (x’, y’, z’)) be local coordinates on M 
(resp. M’) constructed as in (33). Then it follows immediately from Theorem 2 and our 
special choice of coordinates that f is a local isometry if and only if 

x’ = x’(x, z), Y' = ElY, z’ = z’(z), 

showing that the family of isometries in this case depends on one function of one variable 
and one function of two variables. 

Again comparing the family of solutions of the differential equations (14)-(25) with the 
family of isometries, we obtain the following. 

Theorem 5. The isometry classes of the germs of real analytic Lorentzian metrics whose 
Ricci curvature tensor satisfies (6) and such that VEX E2 # 0, are parametrized by two 
functions of two variables and one function of one variable. 

Remark 3. In [6] the authors proved that a curvature homogeneous three-dimensional 
Lorentzian manifold modelled on an indecomposable, non-irreducible Lorentzian symmet- 
ric space has a Ricci curvature tensor satisfying (6) with K = 0, and they constructed a 
family of non-homogeneous curvature homogeneous examples (depending on one function 
of one variable), by assuming that the null eigenvector E2 is recurrent, i.e., F = H = 0. 
The techniques developed in this section allow us to obtain a complete local classifica- 
tion of three-dimensional curvature homogeneous Lorentzian manifolds modelled on an 
indecomposable, non-irreducible Lorentzian symmetric space, thereby solving (at least in 
the three-dimensional case) a problem stated in [6]. In the rest of this section, we will use 
the results stated above to compute a family of solutions similar to the one in [6], as well 
as some new examples of curvature homogeneous Lorentzian manifolds modelled on an 
indecomposable, non-irreducible three-dimensional Lorentzian symmetric manifold. 

Example 1. We start by constructing a family ot explicit examples similar to the one in 
[6]. To do this, we put 

F=H=K=a=O. c= 1. 
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Then it follows from (30) and (31) that 

c = 0, A = 0, I = I(z), 

and putting 

b = -Qz)y - rjx2, 

we obtain a family of curvature homogeneous Lorentzian manifolds (depending on the 
function f(z)) whose Ricci tensor satisfies (6) with K = 0. It can be shown using Theorem 
2 that these manifolds are pairwise non-isometric and it is easily seen from Theorem 3 that 
they are, in general, non-homogeneous. 

Example 2. To construct a new example, we put F = K = 0 and H = -C = x-l. Then 
it follows from (30) and (3 1) that putting 

a = 2x-‘y, b = ixm2y2 - 2qx2 lnx, c= 1, 

in (27), we obtain a curvature homogeneous three-dimensional Lorentzian manifolds mod- 
elled on an indecomposable Lorentzian symmetric space, while (11) and Theorem 2 imply 
that this example cannot be isometric to the ones given in [6], and Theorem 3 shows that 
this manifold is not locally homogeneous. 

Example 3. Finally, putting 

FE -;y-', C=H=K=O, ii= 1, i=l 

in the computation outlined in Case 2, and choosing 

tI = in, e = 3, 

we find that the null frame field 

El = y-2/3-$ E2=$ 

E3 = --~xY’/~-& + 3,~~‘~ 

determines a curvature homogeneous non-homogeneous Lorentzian manifold modelled on 
an indecomposable non-irreducible symmetric space, which by Remark 2 is not isometric 
to any of the examples introduced before. 

Remark 4. It follows from Theorem 3 that there exists no homogeneous three-dimensional 
Lorentzian manifold whose Ricci tensor satisfies (6) with K > 0. As an immediate conse- 
quence, the curvature homogeneous (non-homogeneous) Lorentzian manifolds associated 
to K > 0 do not admit a homogeneous model space. 
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